Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0368420160590010001
Journal of Plant Biology
2016 Volume.59 No. 1 p.1 ~ p.15
Development of functional modules based on co-expression patterns for cell-wall biosynthesis related genes in rice
Chandran Anil Kumar Nalini

Jeong Ho-Young
Jung Ki-Hong
Lee Chan-Hui
Abstract
The functional elucidation of plant cell wall biosynthesis (CWB) related genes is important for understanding various stress tolerance responses as well as enhancing biomass in plants. Despite their significant role in physiology and growth of the plant, the function of a limited number of CWB related genes have been identified. Major obstacles such as functional redundancy and limited functional information pose challenges in the characterization of CWB genes. Here, a genome-wide analysis of CWB genes using meta-expression data revealed their roles in stress tolerance and developmental processes. The identification of coexpressed CWB genes suggests functional modules for plant cell wall biosynthesis associated with specific tissue types, biotic stress, abiotic stress, and hormone responses. More interestingly, we identified that glycosyl hydrolases are specialized for root and pollen development, glycosyltransferases for ubiquitous function and leaf development, and carbohydrate esterases for pollen development. A T-DNA insertional mutant of OsCESA9 showing internode preferred expression revealed severe dwarfism and a co-expression network analysis of OsCESA9 in oscesa9 mutant suggest downstream pathways for secondary cell wall biosynthesis and DNA repair processes. Data from our studies will facilitate functional genomic studies of CWB genes in rice and contribute to the enhancement of biomass and yield in crop plants.
KEYWORD
Cell wall biosynthesis, Co-expression analysis, Meta-expression analysis, Rice, T-DNA insertional mutants
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)